Series involving Binomial Coefficients

IMPORTANT

Series involving Binomial Coefficients: Overview

This topic covers concepts such as Binomial Series, Use of Differentiation in Finding the Sum of Binomial Series, Use of Integration in Finding the Sum of Binomial Series, Use of Complex Numbers in Finding the Sum of Binomial Series, etc.

Important Questions on Series involving Binomial Coefficients

HARD
IMPORTANT

Let n>2 be an integer and define a polynomial px=xn+an-1xn-1++a1x+a0, where a0,a1,,an-1 are integers. Suppose we know that npx=1+xp'x. If b=p1, then

EASY
IMPORTANT

C0 7+C17+C2+C377++C6+C777=

MEDIUM
IMPORTANT

The sum of the series 2.20C0+5.20C1+8.20C2+11.20C3+.......+62.20C20 is equal to

MEDIUM
IMPORTANT

The sum of the series 2.20C0+5.20C1+8.20C2+11.20C3+.......+62.20C20 is equal to

MEDIUM
IMPORTANT

Find the sum of the coefficient of all the integral power of x in the expansion of 1+x240

HARD
IMPORTANT

If 'n' is a positive integer, then r=1nr2·Cr=_____2n-2

HARD
IMPORTANT

If nN and 1-2x+5x2+10x3(1+x)n=a0+a1x+a2x2+, and a12=2a2, then value of a0+n is

HARD
IMPORTANT

If 1+x+x225=Σr=050ar xr, then

 Σr=012a4r=

HARD
IMPORTANT

If 1+x+x225=Σr=050ar xr, then r=016a3r=

MEDIUM
IMPORTANT

If r=19r+32r9Cr=α329+β, then α+β is equal to

MEDIUM
IMPORTANT

Statement- 1r=0n(r+1)nCr=(n+2)2n-1
Statement -2:r=0n(r+1)nCrxr=(1+x)n+nx(1+x)n-1

MEDIUM
IMPORTANT

The value of C450+r=16C356-r is :
 

HARD
IMPORTANT

For any positive integer m, n with nm,letnm=Cmn. Prove that nm+n-1m+n-2m++mm=n+1m+1· Hence or otherwise, prove that nm+2n-1m+3n-2m++n-m+1mm=n+2m+2.

MEDIUM
IMPORTANT

For 2rn,nr+2nr-1+nr-2=

MEDIUM
IMPORTANT

The value of sum of the series 3·nC0+ nC1322+ nC2333+ nC3344+... nCn3n+1n+1 is

MEDIUM
IMPORTANT

Evaluate :   2 0 C 0 - 2 0 C 1 + 2 0 C 2 - 2 0 C 3 + ... - ... + 2 0 C 1 0 .

EASY
IMPORTANT

The value of  nC02+ nC12+ nC22+...+ nCn2=_____

HARD
IMPORTANT

If 1+x+x225=a0+a1x+a2x2+.......+a50x50,  then a0+a2+a4+......+a50 is ______

HARD
IMPORTANT

Value of C010·20C10+10C1·20C9++10C10·20C0 

EASY
IMPORTANT

The value of C02n+C12n+C22n++Cn2n is